Apache Tribes - Introduction

Table of Contents

Quick Start

Apache Tribes is a group or peer-to-peer communication framework that enables you to easily connect your remote objects to communicate with each other.

  • Import: org.apache.catalina.tribes.Channel
  • Import: org.apache.catalina.tribes.Member
  • Import: org.apache.catalina.tribes.MembershipListener
  • Import: org.apache.catalina.tribes.ChannelListener
  • Import: org.apache.catalina.tribes.group.GroupChannel
  • Create a class that implements: org.apache.catalina.tribes.ChannelListener
  • Create a class that implements: org.apache.catalina.tribes.MembershipListener
  • Simple class to demonstrate how to send a message:
    //create a channel
    Channel myChannel = new GroupChannel();
    
    //create my listeners
    ChannelListener msgListener = new MyMessageListener();
    MembershipListener mbrListener = new MyMemberListener();
    
    //attach the listeners to the channel
    myChannel.addMembershipListener(mbrListener);
    myChannel.addChannelListener(msgListener);
    
    //start the channel
    myChannel.start(Channel.DEFAULT);
    
    //create a message to be sent, message must implement java.io.Serializable
    //for performance reasons you probably want them to implement java.io.Externalizable
    Serializable myMsg = new MyMessage();
    
    //retrieve my current members
    Member[] group = myChannel.getMembers();
    
    //send the message
    myChannel.send(group,myMsg,Channel.SEND_OPTIONS_DEFAULT);

Simple yeah? There is a lot more to Tribes than we have shown, hopefully the docs will be able to explain more to you. Remember, that we are always interested in suggestions, improvements, bug fixes and anything that you think would help this project.

Note: Tribes is currently built for JDK1.5, you can run on JDK1.4 by a small modifications to locks used from the java.util.concurrent package.

What is Tribes

Tribes is a messaging framework with group communication abilities. Tribes allows you to send and receive messages over a network, it also allows for dynamic discovery of other nodes in the network.
And that is the short story, it really is as simple as that. What makes Tribes useful and unique will be described in the section below.

The Tribes module was started early 2006 and a small part of the code base comes from the clustering module that has been existing since 2003 or 2004. The current cluster implementation has several short comings and many workarounds were created due to the complexity in group communication. Long story short, what should have been two modules a long time ago, will be now. Tribes takes out the complexity of messaging from the replication module and becomes a fully independent and highly flexible group communication module.

In Tomcat the old modules/cluster has now become modules/groupcom(Tribes) and modules/ha (replication). This will allow development to proceed and let the developers focus on the issues they are actually working on rather than getting boggled down in details of a module they are not interested in. The understanding is that both communication and replication are complex enough, and when trying to develop them in the same module, well you know, it becomes a cluster :)

Tribes allows for guaranteed messaging, and can be customized in many ways. Why is this important?
Well, you as a developer want to know that the messages you are sending are reaching their destination. More than that, if a message doesn't reach its destination, the application on top of Tribes will be notified that the message was never sent, and what node it failed.

Why another messaging framework

I am a big fan of reusing code and would never dream of developing something if someone else has already done it and it was available to me and the community I try to serve.
When I did my research to improve the clustering module I was constantly faced with a few obstacles:
1. The framework wasn't flexible enough
2. The framework was licensed in a way that neither I nor the community could use it
3. Several features that I needed were missing
4. Messaging was guaranteed, but no feedback was reported to me
5. The semantics of my message delivery had to be configured before runtime
And the list continues...

So I came up with Tribes, to address these issues and other issues that came along. When designing Tribes I wanted to make sure I didn't lose any of the flexibility and delivery semantics that the existing frameworks already delivered. The goal was to create a framework that could do everything that the others already did, but to provide more flexibility for the application developer. In the next section will give you the high level overview of what features tribes offers or will offer.

Feature Overview

To give you an idea of the feature set I will list it out here. Some of the features are not yet completed, if that is the case they are marked accordingly.

Pluggable modules
Tribes is built using interfaces. Any of the modules or components that are part of Tribes can be swapped out to customize your own Tribes implementation.

Guaranteed Messaging
In the default implementation of Tribes uses TCP or UDP for messaging. TCP already has guaranteed message delivery and flow control built in. I believe that the performance of Java TCP, will outperform an implementation of Java/UDP/flow-control/message guarantee since the logic happens further down the stack. UDP messaging has been added in for sending messages over UDP instead of TCP when desired. The same guarantee scenarios as described below are still available over UDP, however, when a UDP message is lost, it's considered failed.
Tribes supports both non-blocking and blocking IO operations. The recommended setting is to use non blocking as it promotes better parallelism when sending and receiving messages. The blocking implementation is available for those platforms where NIO is still a trouble child.

Different Guarantee Levels
There are three different levels of delivery guarantee when a message is sent.

  1. IO Based send guarantee. - fastest, least reliable
    This means that Tribes considers the message transfer to be successful if the message was sent to the socket send buffer and accepted.
    On blocking IO, this would be socket.getOutputStream().write(msg)
    On non blocking IO, this would be socketChannel.write(), and the buffer byte buffer gets emptied followed by a socketChannel.read() to ensure the channel still open. The read() has been added since write() will succeed if the connection has been "closed" when using NIO.
  2. ACK based. - recommended, guaranteed delivery
    When the message has been received on a remote node, an ACK is sent back to the sender, indicating that the message was received successfully.
  3. SYNC_ACK based. - guaranteed delivery, guaranteed processed, slowest
    When the message has been received on a remote node, the node will process the message and if the message was processed successfully, an ACK is sent back to the sender indicating that the message was received and processed successfully. If the message was received, but processing it failed, an ACK_FAIL will be sent back to the sender. This is a unique feature that adds an incredible amount value to the application developer. Most frameworks here will tell you that the message was delivered, and the application developer has to build in logic on whether the message was actually processed properly by the application on the remote node. If configured, Tribes will throw an exception when it receives an ACK_FAIL and associate that exception with the member that didn't process the message.

You can of course write even more sophisticated guarantee levels, and some of them will be mentioned later on in the documentation. One mentionable level would be a 2-Phase-Commit, where the remote applications don't receive the message until all nodes have received the message. Sort of like a all-or-nothing protocol.

Per Message Delivery Attributes
Perhaps the feature that makes Tribes stand out from the crowd of group communication frameworks. Tribes enables you to send to decide what delivery semantics a message transfer should have on a per message basis. Meaning, that your messages are not delivered based on some static configuration that remains fixed after the message framework has been started.
To give you an example of how powerful this feature is, I'll try to illustrate it with a simple example. Imagine you need to send 10 different messages, you could send them the following way:

Message_1 - asynchronous and fast, no guarantee required, fire and forget
Message_2 - all-or-nothing, either all receivers get